The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice.
نویسندگان
چکیده
The resistance-nodulation-division (RND)-type efflux pump is one of the causes of the multidrug resistance of Stenotrophomonas maltophilia. The roles of the RND-type efflux pump in physiological functions and virulence, in addition to antibiotic extrusion, have attracted much attention. In this study, the contributions of the constitutively expressed SmeYZ efflux pump to drug resistance, virulence-related characteristics, and virulence were evaluated. S. maltophilia KJ is a clinical isolate of multidrug resistance. The smeYZ isogenic deletion mutant, KJΔYZ, was constructed by a gene replacement strategy. The antimicrobial susceptibility, virulence-related physiological characteristics, susceptibility to human serum and neutrophils, and in vivo virulence between KJ and KJΔYZ were comparatively assessed. The SmeYZ efflux pump contributed resistance to aminoglycosides and trimethoprim-sulfamethoxazole. Inactivation of smeYZ resulted in attenuation of oxidative stress susceptibility, swimming, flagella formation, biofilm formation, and secreted protease activity. Furthermore, loss of SmeYZ increased susceptibility to human serum and neutrophils and decreased in vivo virulence in a murine model. These findings suggest the possibility of attenuation of the resistance and virulence of S. maltophilia with inhibitors of the SmeYZ efflux pump.
منابع مشابه
Inactivation of SmeSyRy Two-Component Regulatory System Inversely Regulates the Expression of SmeYZ and SmeDEF Efflux Pumps in Stenotrophomonas maltophilia
SmeYZ efflux pump is a critical pump responsible for aminoglycosides resistance, virulence-related characteristics (oxidative stress susceptibility, motility, and secreted protease activity), and virulence in Stenotrophomonas maltophilia. However, the regulatory circuit involved in SmeYZ expression is little known. A two-component regulatory system (TCS), smeRySy, transcribed divergently from t...
متن کاملOverexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology.
OBJECTIVES The use of antibiotics for the treatment of infectious diseases has led to important changes in the structure of pathogenic bacterial populations. However, these changes could be buffered if the expression of antibiotic resistance genes were to lead to the counter-selection of antibiotic-resistant strains in antibiotic-free environments. To test the effect of antibiotic resistance on...
متن کاملThe efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia.
Trimethoprim-sulfamethoxazole (co-trimoxazole) is one of the antimicrobials of choice for the treatment of Stenotrophomonas maltophilia infections. The analysis of mutants either lacking or overexpressing the efflux pump SmeDEF shows that this efflux pump contributes to intrinsic and acquired co-trimoxazole resistance in S. maltophilia. Since SmeDEF can extrude a variety of antibiotics, selecti...
متن کاملMacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation.
OBJECTIVES To characterize a five gene cluster, macRS-macABCsm, in Stenotrophomonas maltophilia. METHODS The presence of macABCsm operon was verified by RT-PCR. The substrate spectrum of the MacABCsm efflux pump was investigated by mutant construction and susceptibility testing. The physiological role of MacABCsm was assessed by comparing the growth of wild-type and macABCsm mutant under diff...
متن کاملA Linkage between SmeIJK Efflux Pump, Cell Envelope Integrity, and σE-Mediated Envelope Stress Response in Stenotrophomonas maltophilia
Resistance nodulation division (RND) efflux pumps, such as the SmeIJK pump of Stenotrophomonas maltophilia, are known to contribute to the multidrug resistance in Gram-negative bacteria. However, some RND pumps are constitutively expressed even though no antimicrobial stresses occur, implying that there should be some physical implications for these RND pumps. In this study, the role of SmeIJK ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 59 7 شماره
صفحات -
تاریخ انتشار 2015